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Stability Analysis of an SSII∗  Epidemic Model 
with Limited Treatment  

 
Ahmed A. Muhseen● 

 
Abstract: There are many factors effect on the spread of infectious disease or control it, some of these factors is (treatment). And there are 
other factors that help the evolution of infectious diseases, for example (Negligence of the disease or mistake diagnosis of the disease). 
The main objective of this paper is to study the effect of those factors on the dynamical behavior of a SSII ∗ model. The impact of contact 
between of population and external sources of disease for example (air and other), on the dynamics of SSII ∗  epidemic model is 
investigated. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global dynamical 
behaviors of the model are studied. Finally, in order to confirm our obtained results and specify the effects of model’s parameters on the 
dynamical behavior, numerical simulation of the SSII ∗ model is performed. 

Keywords: Epidemic models, Stability, Treatment, External Source. 
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6T1.  Introduction 
     The mathematical models have become important tools 
in analyzing the spread and control of infectious diseases. 
The development of such models is aimed at both 
understand observed epidemiological patterns and 
predicting the consequences of the introduction of public 
health interventions to control the spread of diseases. Some 
diseases not confer immunity against the disease but other 
diseases confer immunity so recovered individuals gain 
immunity against disease. These types of disease can be 
modifications by SI and SIS where S susceptible and I 
infective respectively. Both epidemic models (SI and SIS) 
are one of the most basic and most important models in 
describing of many diseases. Therefore, it attached many 
authors attention and a number of papers have been 
published. For example Gao and Hethcote [1] considered an 
SIS model with a standard disease incidence and density-
dependent demographics. Li and Ma [2] studied an SIS 
model with vaccination and temporary immunity. Kermack 
and Mckendeick [3] proposed a simple SIS model with 
infective immigrants. In recent years, many papers found 
treatment function for example, Li et al [4] proposed the SIS 
model with a limited resource for treatment. Shurowq k. 
Shafeeq [5] studied the effect of treatment, immigrants and 
vaccinated on the dynamic of SIS epidemic model. In this 
paper 6Twe proposed and studied a mathematical model 
consisting of SSII∗ epidemic model with treatment, in 
which it is assumed that the disease transmitted by contact 
as well as external sources in the environment. 6TThe local as 
well as global stability analysis of this model is 
investigated. 
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2. The mathematical model 
     Consider a simple epidemiological model in which the 
total population ( say N(t)) at time  t  is divided into two 
sub classes the susceptible individuals  S(t) and infected 
individuals I(t). Such model can be represented as follows: 

 
ISI

dt
dI

SSI
dt
dS

µβ

µβ

−=

−−Λ=

1

1
                                                             (1) 

  Here  0>Λ  is the recruitment rate of the population, 
0>µ  is the natural death rate of the population, 01 >β is 

the infected rate (incidence rate) of susceptible individuals 
due to directed contact with the infected individuals. 
Now, since there are many infectious disease for example 
(7TThe flue., 2T7Ttube rculosis2T7T and 2T7Tcholera2T), spread in the 
environment by different factors including insects, contact 
or other vectors, therefore, we assumed that the disease in 
the a above model will transmitted between the population 
individuals by contact as well as external source of disease 
in the environment with an external source incidence 
rate 0≥β . Also it is assumed that the nature recovery rate 
from infected individuals returns to be susceptible class 
with a constant rate 0≥α  and 0>ψ is the rate of infected 
individuals from disease I into new disease ∗I . 
Finally 0,0 2 >> βθ , the disease related death from second 
disease and the infected rate by contact between the 
susceptible individuals and infected individuals of second 
disease respectively. Then if addition above assumption 
system (1) can be rewritten in the form:  
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Keeping the above in view, in order to study the effect of 
treatment on the system (2) let T(I) represented the 
treatment function which given by [4]: 
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Accordingly, the flow of disease in system (2) along with 
the above assumptions can be representing in the following 
block diagram: 
 

 
Figure (1): Block diagram of system (3). 
 
Therefore, system (2) can be modified to: 
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her  ∗= rIk  this means that the treatment rate is 
proportional to the number of the infected individuals  
when the capacity of treatment is not reached, and 
otherwise takes the maximal capacity. Therefore at any 
point of time t the total number of population be 
comes )()()()( tItItStN ∗++= . Obviously, due to the 

biological meaning of the variables S(t), I(t) and )(tI∗ , 
system (4) has the domain 

( ) }{ 0,0,0,,, 33 ≥≥≥∈= ∗
+

∗
+ IISRIISR  which is positively in 

variant for system (4). Clearly, the interaction functions on 
the right hand said of system (4) are continuously 
differentiable. In fact they are Liptschizan function on 3

+R . 
Therefore, the solution of system (4) exits and unique. 
Further, all solutions of system (4) with non-negative initial 
conditions are uniformly bounded as shown in the 
following theorem. 
Theorem (1): All the solutions of system (1), which are 
initiate in 3

+R , are uniformly bounded.  

Proof:  Let ( ))(),(),( tItItS ∗  be any solution of the system (4) 

with non-negative initial conditions ( ))0(),0(),0( ∗IIS . 

Since )()()( tItItSN ∗++= , then: 
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dt
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So, Λ≤+ N
dt
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Now, by using Gronwall Lemma [6], it obtains that: 

 tt eNetN µµ
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Therefore, ,)(
µ
Λ

≤tN  as ∞→t , hence all the solutions of 

system (4) that initiate in 3
+R  are confined in the reign: 
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Which complete the proof.                                                      ■ 
                                                                                                                         
3. Existence of equilibrium point of system (4) 
    The system (4) has at most three biologically feasible 
points, namely 2,1,0,),,( == ∗ iIISE iiii . The existence 
conditions for each of these equilibrium points are 
discussed in the following: 

1) If 0=I and 0=∗I , then the system (4) has an 
equilibrium point called a disease free equilibrium point 
and denoted by  )0,0,( 00 SE =  where: 

 
µ
Λ

=0S                                                                                 (5) 

  2) If  0=∗I , then the system (4) has an equilibrium 
point called a second disease free equilibrium point and 
denoted by  )0,,( 111 ISE =  where 11 IandS   represented 
the positive solution of the following set of equations: 
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From equation (1) of above system we get: 
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Substituting  1S  in equation (2) of system (6) we get: 
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her: 
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Clearly, equation (7b) has a unique positive root by 1I  and 

then  )( 2E  exists uniquely in Int. 3
+R  if and only if   02 >D . 
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 3)  If   0≠I  and  0≠∗I  then the system (4) has an 
equilibrium point called endemic equilibrium point and 
denoted by  ),,( 2222

∗= IISE  where 22 , IS and ∗
2I  

represented the positive solution of the following set of 
equations in case )0( ∗∗ << II of equation (3) (treatment 
function): 
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                         (8) 

Straightforward computation to solve the above system of 
equations and from equation (2) and (3) of system (8) gives 
that: 
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While, ∗
2I  positive root if and only if   

))(()( 2122 IrI ββθµψαµβ +++<++   

Now, substituting  2S  and  ∗
2I  in equation (1) of system (8) 

we get: 
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Clearly, equation (10) has a unique positive root by 2I  and 

then  )( 2E  exists uniquely in Int. 3
+R  if and only if   01 >A  

then we have the following three cases: 
Case (1):  If the following conditions hold: 
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Case (2):  If the following conditions hold: 
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Case (3):  If the following conditions hold: 
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4. Local stability analysis of system (4) 

    In this section, the local stability analysis of the 
equilibrium points  2,1,0, =iEi  of the system (4) studied as 
shown in the following theorems. 
 
Theorem (2): The disease free equilibrium point  

)0,0,( 00 SE =  of system (4) is locally asymptotically stable 
provided that: 
 ψαµβα ++<< 01S                                                         (12a) 
 rSr ++<< θµβ 02                                                           (12b) 
 ( )[ ] ( )0201001 2 SrSS βψβψαµβαβ −>−+++−             (12c) 
Proof:    The Jacobian matrix of system (4) at  )( 0E  can be 
written as: 
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Then the characteristic equation of )( 0EJ  is given by: 
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Now, according to (Routh-Hurwitz) criterion [7], ( )0E  will 
be locally asymptotically stable provided that 01 >Ω ;   

03 >Ω  and 0321 >Ω−ΩΩ=∆ .Clearly, 3,1,0 =>Ω ii  
provided that conditions (12a)-(12b) hold. While, 

,0321 >Ω−ΩΩ=∆   
Provided that conditions (12)-(a-c) hold. 
Hence the proof is complete.                                                    ■                                                                                                           
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Theorem (3): The second disease free equilibrium point 
)0,,( 111 ISE =  of system (4) is locally asymptotically stable 

if the following sufficient conditions are satisfied: 
 { }θβψαβµ −−−−> )(2),(2.max 1211 rSS                         (14) 
Proof:    The Jacobian matrix of system (4) at )( 1E that 
denoted by )( 1EJ  can be written as: 
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Now, according to Gersgorin theorem [8] if the following 
condition holds: 
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Therefore, according to the given condition (14) all the 
eigenvalues of )( 1EJ  exists in the left half plane and hence, 

1E  is locally asymptotically stable.                                         ■ 
                                                                            ■ 
Theorem(4): The endemic equilibrium point 

),,( 2222
∗= IISE  of system (4) is locally asymptotically 

stable if the following sufficient conditions are satisfied: 
 { }θβψαβµ −−−−> )(2),(2.max 2221 rSS                       (15) 
Proof:    The Jacobian matrix of system (4) at )( 2E that 
denoted by )( 2EJ  can be written as: 
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Therefore, according to the given condition (15) all the 
eigenvalues of )( 2EJ  exists in the left half plane and hence, 

2E  is locally asymptotically stable.                                        ■ 
                                                                           ■ 
5. Globally stability of system (4)  
    In this section, the global dynamics of system (4) is 
studied with the help of Lyapunov function as shown in the 
following theorems. 
Theorem (5):  Assume that, the disease free equilibrium 
point 0E  of system (4) is locally asymptotically stable. Then 

the basin of attraction of ( )0E , say 3
0)( +⊂ REB , it is globally 

asymptotically stable if satisfy the following condition: 
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Obviously, 01 <dt
dV , for every initial points and then 1V  is a 

Lyapunov function provided that condition (16) hold. Thus 
0E  is globally asymptotically stable in the interior of 

),( 0EB  which means that )( 0EB  is the basin of attraction 
and that complete the proof.                                                    ■ 
                                                                                       ■ 
Theorem (6):  Assume that, the second disease free 
equilibrium point 1E  of system (4) is locally asymptotically 

stable. Then the basin of attraction of ( )1E , say 3
1)( +⊂ REB , 

it is globally asymptotically stable if satisfy the following 
conditions: 
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Clearly, RRV →+
3

2 :  is a continuously differentiable 
function such that ,0)0,,( 112 =ISV  

and )0,,(),,(,0),,( 112 ISIISIISV ≠∀> ∗∗ . Further we have: 
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By simplifying this equation we get: 
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Therefore, according to condition (17a) it is obtaining that: 
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Obviously, 02 <dt
dV  for every initial points satisfying 

condition (17b) and then 2V  is a Lyapunov function 
provided that conditions (17a)-(17b) hold. Thus 2E  is 
globally asymptotically stable in the interior of  ),( 2EB  
which means that  )( 2EB  is the basin of attraction and that 
complete the proof.                           ■ 
 
Theorem (7):   Let the endemic equilibrium point 2E  of 
system (4) is locally asymptotically stable. Then it is 
globally asymptotically stable provided that: 
 { } µθβψαβ <+−+− )(),(.max 2222 rSS                         (18a) 
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Proof: Consider the following positive definite function: 
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Therefore, according to the conditions (18a)-(18d) we obtain 
that: 
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Clearly, 03 <dt
dV , and then 3V  is a Lyapunov function 

provided that the given conditions(18) (a-d) hold. 
Therefore, ( )2E   is globally asymptotically stable.                                                                                      
■ 
6.  Numerical analysis of systems (1) 
     In this section, the global dynamic of system (4) is 
studied numerically. The objectives of this study are 
confirming our obtained analytical results and understand 
the effects of contact, the external sources for disease and 
existence of treatment on the dynamic of SSII∗ epidemic 
model. Consequently, the system (4) is solved numerically 
for different sets of initial conditions and for different sets 
of parameters. It is observed that, for the following set of 
hypothetical parameters that satisfies stability conditions 
(19a)-(19e) of endemic equilibrium point, system (4) has a 
globally asymptotically stable endemic equilibrium point as 
shown in following figure. 

 
4.0;6.0;2;2;2.0
001.0,001.0;1.0;500 21

=====
====

θψαµ
βββ

r
E                         (19) 
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Figure 2- Phase plot and time series of system (4) starting 
from different initial points. (a) Trajectories of S, started at 
(3500, 1000, 200) (b) trajectories of I, started at (2000, 4000, 
300) (c) trajectories of ∗I  started at (1000, 3000, 500). 
 
Obviously, Figure (2) shows clearly the convergence of 
system (4) to the endemic equilibrium point 

)154,193,1845(2 =E  asymptotically from three different 
initial points. 
 
The effect of increasing the incidence rate of disease 
resulting from external sources on the dynamics of system 
(4) is studied by solving the system numerically for the 
parameters values 4.0,2.0,001.0=β  respectively, keeping 
other parameters fixed as given in equation (19), then the 
trajectories of system (4) are drawn in Figures (3a)- (3c) 
respectively and starting at (3500, 2000, 1000). 

 

 
Figure 3- Time series of the solution of system (4). (a) 
for 001.0=β , (b) for 2.0=β , (c) for 4.0=β . 
According to Figure (3), as the incidence rate of disease 
resulting by external sources increases (through 
increasing β ), then the trajectory of system (4) approaches 
asymptotically to the endemic equilibrium point. In fact as 
β  increases it is observed that the number of susceptible 

decrease and the number of infected in first disease 
individuals and infected in second disease individuals 
increases. 
 
Similar results are obtained, as those shown in case of 
increasing β , in case of increasing the incidence rate of 
disease resulting by contact between susceptible and 
infected in first disease, that is means increasing 1β  and 
keeping other parameters fixed as given in (19). 
 
The effect of increasing the incidence rate of disease 
resulting by contact between susceptible and infected in 
second disease on the dynamics of system (4) is studied by 
solving the system numerically for the parameters values 

006.0,004.0,001.02 =β  respectively, keeping other 
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parameters fixed as given in equation (19). And then the 
trajectories of system (4) are drawn in Figures (4a)-(4c) 
respectively. 

 

 
Figure 4- Time series of the solution of system (4). (a) 
for 001.02 =β , (b) for 004.02 =β , (c) for 006.02 =β . According 
to Figure (4), as the incidence rate of disease resulting by 
contact between susceptible individuals and infected in 
second disease increases, then the trajectory of system (4) 
still approaches asymptotically to the endemic equilibrium 
point. In fact as 2β  increases it is observed that the number 
of susceptible and infected in first disease individuals 
decrease and the number of infected in second disease 
individuals increases. 
 
In the following, system (4) is solved numerically for the 
following values of natural recovery of first disease 
rates 4,3.2,1=α , keeping other parameters fixed as given 
in equation (19), and then the trajectories of system (4) are 
drawn in Figures (5a)-(5c) respectively. 

 

 
Figure 5- Time series of the solution of system (4). (a) for 1=α , 
(b) for 3.2=α , (c) for 4=α .  
According to Figure (5), as the natural recovery of first 
disease ( )α , then the trajectory of system (4) approaches 
asymptotically to the endemic equilibrium point. In fact as 
α  increases it is observed that the number of susceptible 
individuals increase and the number of infected in first 
disease and infected in second disease individuals 
decreases. 
 
Now, the effect of treatment rate on the dynamical behavior 
of system (4) is studied too. The system is solved 
numerically for different values of 3,1,5.0=r , keeping 
other parameters fixed as given in equation (19), and then 
the trajectories of system (4) are drawn in Figures (6a)-(6c) 
respectively. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014                                                                                                                774 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org 

 

 
Figure 6- Time series of the solution of system (4). (a) 
for 5.0=r , (b) for 1=r , (c) for 3=r .  
According to Figure (6), as the treatment ( )r , then the 
trajectory of system (4) approaches asymptotically to the 
endemic equilibrium point. In fact as r  increases it is 
observed that the number of susceptible and infected in 
first disease individuals increase and the number of 
infected in second disease individuals decrease. 
 
Similar results are obtained, as those shown in case of 
increasing r , in case of increasing the disease related death 
of second disease, that is means increasing θ  and keeping 
other parameters fixed as given in (19). As shown in the 
following figures (7a)-(7c). 

 

 
Figure 7- Time series of the solution of system (4). (a) 
for 2.0=θ , (b) for 5.0=θ , (c) for 8.0=θ .  
According to Figure (7), the disease related of second 
disease ( )θ , and then the trajectory of system (4) approaches 
asymptotically to the endemic equilibrium point. In fact as 
θ  increases it is observed that the number of susceptible 
and infected in first disease individuals increase and the 
number of infected in second disease individuals decrease. 
 
The effect of the natural death rate on the dynamics of 
system (4) is investigated numerically. It is observed that, 
increases the parameter µ  and keeping other parameters 
fixed as in (19) then the trajectory of system (4) approaches 
asymptotically to the endemic equilibrium point as shown 
in Figures (8a)-(8b).  
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Figure 8- Time series of the solution of system (4). (a) 
for 1.0=µ , (b) for 2.0=µ , (c) for 3.0=µ .  
According to Figure (8), the natural death ( )µ , and then the 
trajectory of system (4) approach asymptotically to the 
endemic equilibrium point. In fact as µ  increases it is 
observed that the number of susceptible individuals with 
the number of infected in first disease and second disease 
individuals decrease. 
 
Finally, the effect of evolution rate of first disease and 
becomes to second disease that means increasingψ , on the 
dynamical behavior of system (4) is studied. The system is 
solved numerically for different values of 9.0,7.0,5.0=ψ , 
keeping other parameters fixed as given in equation (20) 
and then the trajectory of system (4) as shown in Figures 
(9a)-(9c). 

 
 

 
Figure 9- Time series of the solution of system (4). (a) 
for 5.0=ψ , (b) for 7.0=ψ , (c) for 9.0=ψ .  
According to Figure (9), the evolution rate ( )ψ , and then the 
trajectory of system (4) approach asymptotically to the 
endemic equilibrium point. In fact as ψ  increases it is 
observed that the numbers of susceptible individuals and 
second disease individuals increase with the number of 
infected in first disease individuals decrease. 
 
7. Conclusion and discussion 
          In this paper, we proposed and analyzed an 
epidemiological model that described the dynamical 
behavior of an epidemic model, where the infectious 
disease transmitted directly from external sources as well as 
through contact between them. The model included fore 
non-linear autonomous differential equations that describe 
the dynamics of three different populations namely 
susceptible individuals ),(S   infected individuals for first 
disease )(I and infected individuals for second disease 

(evolution of first disease) )( ∗I . The boundedness of system 
(4) has been discussed. The conditions for existence, 
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stability for each equilibrium points are obtained. Further, 
it is observed that the disease free equilibrium point ( )0E  
exists when 0=I  and locally stable if the conditions are 
hold (12) and it is globally stable if and only if the condition 
(16) holds. The second disease free equilibrium point ( )1E  
exists if ( 02 >D ) holds and locally stable if the conditions 
(14) are hold while it is globally stable if and only if the 
conditions (17a)-(17b) hold. The endemic equilibrium point 
( )2E  exists if 01 >A and one of three conditions is hold (11a 
or 11b or 11c) and locally stable if the conditions (15) hold 
more than it is globally stable if and only if the conditions 
(18a)-(18d) hold. Finally, to understand the effect of varying 
each parameter on the global system (4) and confirm our 
above analytical results, the system (4) has been solved 
numerically for different sets of initial points and different 
sets of parameters given by equation (19), and the following 
observations are made: 
 

1. The system (4) do not has periodic dynamic, 
instead it they approach either to the all 
equilibrium point. 

2. As the incidence rate of disease (external 
incidence rate ( )β  or contact incidence 
rate ( )1β ) increase, the asymptotic behavior of 
the systems (4) approaching to endemic 
equilibrium point. In fact are ( )1,, =iiβ  
increase it are observed that the number of ( )S  

decrease and the number of ( )∗IandI  increase. 

3. As the incidence rate of disease (contact 
incidence rate ( )2β ) increase, the asymptotic 
behavior of the systems (4) approaching to 
endemic equilibrium point. In fact as ( )2β  
increase it is observed that the number of 
( )IandS  decrease and the number of ( )∗I  
increase. 

4. As the natural recovery rate of first disease ( )α  
the asymptotic behavior of the systems (4) 
approaching to endemic equilibrium point with 
increase it is observed that the number of ( )S  

increase and the number of ( )∗IandI  decrease. 

5. As the treatment rate ( )r  and the disease related 
death of second disease ( )θ  increase, the 
asymptotic behavior of the systems (4) 
approaching to endemic equilibrium point with 
increase it is observed that the number of 
( )IandS  increase and the number of ( )∗I  
decrease. 

6. The increase in the natural death rate ( )µ , the 
asymptotic behavior of the systems (4) 
approaching to endemic equilibrium point with 
increase it is observed that the number of each 
the population ( )∗IandIS ,  decrease. 

7. As the evolution rate )(ψ  increase, the 
asymptotic behavior of the systems (4) 
approaching to endemic equilibrium point with 
increase it is observed that the number of 

( )∗IandS  increase and the number of ( )I  
decrease.  
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